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1. Introduction

A correct description of the behavior of defects in thin-film and nanostructured
systems needs to take into account both the strong influence of outer and inner
interphase boundaries and the fact that the size of a defect core, where classical
solutions are singular and incorrect, occurs in the same order as the characteristic
length of the system (film thickness, grain size, etc.). To take into account the
influence of interphase boundaries, many solutions of boundary value problems for
defects have been obtained in the framework of the classical theory of elasticity
(see [1-5] for a review). To solve the second problem, some approaches have
been proposed which have been aimed at dispensing with classical singularity
of elastic fields within defect cores (see [6, 7] for a review). The present paper
represents a brief description of our recent results [6-10] dealing with nanoscale
elastic fields within and near cores of disclinations [6, 7] and dislocations [6-10]
in the framework of gradient elasticity. The main result shown there was an
elimination of displacement, strain, stress and energy singularities at the defect
line. It is worth noting, that previous continuum models for such kind of defects
which have taken into account couple stresses or non-locality (see [6, 7] for a
review), do not dispense with the singularity in the displacement or strain field,
even though some of them [11-13] claim elimination of stress singularity.

We have started with a simple gradient modification of the linear theory of
elasticity in the form [14]

o = Atre)I + 2ue — eV [\(tre)I + 2ue], (1)

where A and p are the Lamé constants, o and £ are the stress and strain tensors, I
is the unit tensor, V2 denotes Laplacian and ¢ > 0 is the gradient coefficient. Using
(1) or similar theory, the authors of [14-20] have demonstrated the elimination of
classical singularity from the solution for the strain field at the crack tip.
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Encouraged by these results, we first employed [8, 9] the same gradient theory
described by (1) to consider dislocations. In particular, four dislocation config-
urations (i.e. a screw dislocation, an edge dislocation, and the dipoles of such
dislocations) have been considered. It has been shown that in the case of screw
dislocation [8], the elastic strain is zero at the dislocation line and achieves a maxi-
mum value (= %b,/10m/c), at a distance ~ /¢ from it. It is worth noting that for
an atomic lattice, the gradient coefficient, ¢, can be estimated [14] as /¢ = a/4,
where a is the lattice constant. With the Burgers vector, b,, taken to be equal to
a, it follows that the aforementioned maximum value is estimated as ~ 12%. In
the case of edge dislocations [9, 10], we have also shown that all strain components
are equal to zero at the dislocation line achieving maximum values (3-14)% within
the dislocation core (r < 44/¢).

It has also turned out for both types of dislocations that beyond the dislocation
core (ro ~ 4/c) the classical and gradient solutions coincide. Furthermore, it has
been shown that the total displacement varies smoothly across the dislocation line
in contrast to the classical solution which suffers a jump there. In addition, some
of the displacement components which are singular in the classical theory now
become finite (edge dislocation). We have also considered the displacement and
strain distributions for dislocation dipoles and shown that the values of relative
displacements of the cut surfaces depend on the dipole arm, in contrast to the
classical theory where these displacements are always the same. As a result, two
characteristic distances appear naturally in this approach: ry =~ 44/c which may
be viewed as the radius of dislocation core and dy ~ 10/¢ which may be viewed
as the radius of strong short-range nanoscale interaction between dislocations.

In [6], we have considered the elastic fields of disclinations within the gradient
theory described by (1). We have found the elastic strains for all kinds of straight
disclinations, and examined the interactions between disclinations in dipoles. It
has been shown that the main features of the gradient solutions are very similar
to the case of dislocations: the singularities at the disclination lines are eliminated
from the strain fields which are equal to zero or attain finite values there. The non-
vanishing values depend strongly on the dipole arm, d, and exhibit a regular and
monotonous (in the case of wedge disclinations) or non-monotonous (in the case
of twist disclinations) behavior for short-range nanoscale (d < 10+/¢) interactions
between disclinations. When the disclinations annihilate (d — 0), the elastic
strains tend to zero value. Far from the disclination line (r 3> 104/c) gradient and
classical solutions coincide. When d < /¢, the elastic fields of a dipole of wedge
disclinations transform into the elastic fields of an edge dislocation [9] as is the
case in the classical theory of elasticity.

It is important to emphasize, however, that in the framework of the gradient
elasticity theory described by (1), the stress fields of dislocations [8, 9] and discli-
nations [6] remain as in the classical theory of elasticity (same as in the case of
crack problems [14-17, 20]). In order to eliminate the singularities also from the
elastic stresses of defects, we used in {7, 10] a more general version of gradient
elasticity theory which has been also utilized by Ru and Aifantis [21] (see also
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[22]). The constitutive equation of this theory reads
(1 -aVi)o=(1- c2V2) [A(tre)T + 2pe], (2)

with two different gradient coefficients ¢; and ¢;. In [21] a rather simple mathe-
matical procedure analogous to the one contained in [15] has been outlined for the
solution of (2) in terms of solutions of classical elasticity for the same boundary
value problem. In fact, it is easily established (see [15], also [6-10]) that the right
hand side of (2) for the case of ¢; = 0, gives the classical solution for the stress field
which we denote here by o, while the solution for the displacement is determined
through the inhomogeneous Helmholtz equation given by

(1-eeV)u=u’, ®3)

where u® denotes the solution of classical elasticity for the same traction boundary
value problem. Eq. (3) implies a similar equation for strain, €, of the gradient

theory
(1 - CzVZ) € = Eo ) (4)

in terms of the strain €° of the classical elasticity theory for the same traction
boundary value problem. With the displacement or strain field thus determined
(which is obviously independent of whether ¢; = 0 or ¢; # 0), it follows that the
stress field o of (2) can be determined (for the case ¢; # 0) from the equation

(1-aV¥)o=0", (5)

where 0@ denotes the solution obtained for the same boundary value problem
within the classical theory of elasticity.

Thus, in order to solve equation (2), one can solve separately equations (4)
and (5) by utilizing the classical solutions €° and o° provided that appropriate
care is taken for the extra (due to the higher order terms) boundary conditions or
conditions at infinity. For dislocations and disclinations, this problem’s solutions
are accounted for by assuming that the strain and stress fields at infinity have
the same characteristic features for both the gradient and classical theory. The
approach has already been applied [21] to the cases of screw dislocations and mode-
IIT cracks where the asymptotic solutions at the dislocation line and crack tip have
been found demonstrating the elimination of both strain and stress singularities
there.

Below we report the exact analytical solutions of (2) obtained for straight
dislocations and disclinations.

2. Dislocations

2.1. CLASSICAL SOLUTION

Consider a mixed dislocation whose line coincides with the z-axis of a Cartesian
coordinate system. Let its Burgers vector be b = bye, + b e, thus determining
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the edge (b;) and screw (b;) components. In the framework of classical elasticity
theory, the total displacement field is described by

bze; +b.e Yy T,
0 — T~z zz J e —a}
W= o {arctan e 2sugn(y)[l mgn(a:)]}
b, zY z?
+ m {ez — — €y [(1 —2v)Inr + ;2—] } s (6)

where v is the Poisson ratio, 72 = z2+y%. Here we use a single-valued discontinuous
form suggested by de Wit [23]. The elastic strain field ); reads [23, 24] (in units
of 1/[4n(1 - v)]) by

eg = =byy[(1 = 2v)r® + 2:1:2]/1"4, egy = —byy [(1 — 2v)r? — 22?] /7%,
zy =b 17(27 - y2)/r ’ zz = —bz(l - l/)y/?‘2, 522 = bz(l - V)!C/T2, (7)

and elastic stress field o; is [23, 24] (in units of p/[27(1 — v)])

03, = €3, (v =0), op, =ep,(v=0), of, =v(03; +0p,),
0 0 0 (1]
Ory = E-’W’ Oz, =Egq, ng = egz, (8)

Fields (6) (y-component), (7) and (8) are singular at the dislocation line.
The elastic energy W0 of the dislocation per unit dislocation length is [24]

o_ K (;2 b R
w = i (bz+1_y)lnr0 9)
where R denotes the size of the solid and rg is a cut-off radius for the dislocation
elastic field near the dislocation line. When ry — 0, W? becomes singular.

2.2. GRADIENT SOLUTION

Let us now consider the corresponding dislocation fields within the theory of gra-
dient elasticity given by (2). As described in Section 1, one can obtain the solution
of (2) by solving separately equations (3)—(5). They can be solved [9] by using the
Fourier transform method. Omitting intermediate calculations, we give here only
the final results. For the total displacements, solution of (3) gives [8, 9]

b,
u = ul- m—“)'{[ez 22y + ey (y -z )] 2q)2+ellq)0}
+00
+ _‘bzez;rbzez' sign(y) /0 818111(8;) VE G, (10)

where u® is given by (6), ®o = (1—2v) Ko(r//C2), B2 = [2¢2/r% — Ka(r//c2))/ 74,
K, (r/\/cz) is the modified Bessel function of the second kind and n = 0,1,.
denotes the order of this function.
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For the elastic strain, solution of (4) gives [8, 9] &;; = &); + &f], where }; are
given by (7) and &f] (in units of 1/[2x(1 — v)]) by

edr = by’ —vr?)® + (32% —))ds], €l = b, (1-v)yrid,/2,
elr = bay[(a® —vr’)®; — (32® —y%)®), £ff =-b, (1 —v)2r?,/2,

gqy = b,z [y? @1 + (2 — 3y?) @), (11)

where <I>1 = Kl (r/\/c2)/ (\/Eg'ra) For the stresses, the solution of (5) gives [10]
0ij = 0f; +0f], where o}; are given by (8) and ¢ (in units of p/[x(1 — v)]) by

oz =el(v=0,2 0 a), of=el(v=0,c2 1), of; =v(ol +0),
0" =8l (cs ¢r c1), ol = E"’;(Cz e, of;=¢p(c & a). (12)

The main feature of the solution given by (10)-(12) is the absence of any
singularities in the displacement, strain and stress fields. In fact, when r — 0, we
have Ko(r//&)lrv0 = =7+ In (2v/@/r), Ki(r/ /) = Vai/r, Kalr/y/e) =
2ck/r? — 1/2, (k = 1,2) and, thus, u, is finite, &;; — 0, g;; — 0. The fields of
displacements (10) and strains (11) have been discussed in detail in [8, 9] within
a special version of gradient elasticity theory (¢; = 0). The stress fields (12) have
been examined in [10]. It has been shown there that they attain their extreme
values (|ozz| ~ 0.45 s, |oyy| = |05y| = 0.27 p and |oj,| 2 0.25 i for b; = a = 4,/
and v = 0.3) at a distance ~ a/4 from the dislocation line. Far away from the
dislocation core (r > rg &~ 4,/ct), the gradient solutions coincide with the classical
ones [8-10].

Using (12), one can find the elastic energy of the dislocation within the gradient
elasticity given by (2) as follows [10]

W=47r(—”_y—){b2 +[02 + (1 - v)8?] (7+1n2f/%)}, (13)

where v = 0.57721566. .. is Euler’s constant. Thus, we obtain a strain energy
expression which is not singular at the dislocation line.

3. Disclinations
3.1. CLASSICAL SOLUTION

Consider a disclination of general type with Frank vector w = wze;+wye,+w.e, in
an infinite elastic medium. The scalars w; and w, determine the twist components
of the disclination while w, determines its wedge component. Let its line coincides
with the z-axis of the above coordinate system. For such an isolated disclination,
both classical and gradient solutions themselves have no physical meaning because
they are not screened but they may be used in modeling screened disclination
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configurations as basic elements. The classical solution for elastic strain fields e
reads [23] (in units of 1/[47(1 — v)))

g, = w,zzy%ﬂ—_{‘—yz + w,,zygﬂ2_;im——zi—_——z—li + w, {(1 - 20)Inr + g;} )
&, = wzza:gy—ﬁ—-—:;———zaﬁz— + wyzy&/i%u + w, {(1 —2)Inr + :_:} ,
egy = (wyz—wzy)zxz;yz —wz:g, z—:gz—wy::g —wm{(1—2u)lnr+g—j},
egz = wm%—wy{(l—%)lnrﬂ-g}, (14)

and for the stress fields it may be written (in units of p/[27(1 — v)]) as

0 _ 0 (,_ 0 _ 0 () 0 _ .0 0o _ 0 0o _ 0

Ozz = €4, (¥ =0), oy, =€, (V=0), 0, =¢€;, 0, =€, 0,, =€,
z

o), = —wzz2u —wyz21/y +w,2vinr. (15)

Most of the components in (14) and (15) contain singular terms ~ Inr.
3.2. GRADIENT SOLUTION
The gradient solutions have been originally obtained for a disclination dipole

within both the gradient theories considered in Section 1. Solving (4), we solve
ﬁnally for an mdlvidual disclination under consideration the strain field [6] ;5 =

% + €l , where £); are given by (14) and &; (in units of 1/[4n(1 — v)]) by
eft = wy2xz{(y®—vr?)d; + (2° — 3y*)2}
+ wy2yz {(¥ — vr?)®; + (32% — y*) 82} + w, { B0 +7% (2% — )2},
&7 = w,2xz{(z? —vr?)d; ~ (2* — 3y%)%,}
+ wy2yz{(z® — vr®)®; — (32® ~ ¥*)®2} + w, {@o — r?(a® — y*)®2},
e = w2z {-2°® + (32 —y?)®,}
— wy2zz {1 + (2% - 3y7)®2} + w, 23yr® s,
el = wg {—‘I‘o - r?(z? - y2)<I>2} — wy 2zyr?®,,
&7 = wy{-%0 +r(z? — y")®2} — wy 22yr®s, (16)

where ®; are the same as in Section 2 2. For the stress field, the solution of
(5) gives [7] 0i; = 0¥ + of;, where of; are given by (15) and of; (in units of

u/[2n(1 = v)]) by ’

ol =eizs(v=0,c2 & 1), of, =¢j
097 = 2w { (W, +wyy) 27781 (c2 & ¢1) + w,Bo(v = 0,2 ¢+ 1)},

o, = e (62 o a), 08 =€l (c; ¢ c), ag" = egr(cz ea) (A7)

ij

(V—O Ca (—)cl),
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Using the limiting transitions noted in Section 2.2, it is easy to show the
total elimination of classical logarithmic singularity from elastic fields (16) and
(17). In [6, 7], we have considered similar elastic fields of disclination dipoles
in detail and found that they are equal to zero or attain finite values at the
disclination lines. The non-vanishing values depend strongly on the dipole arm, d,
and exhibit a regular and monotonous {wedge disclinations) or non-monotonous
(twist disclinations) behavior for short-range nanoscale (d < 104/c) interactions
between disclinations. When the disclinations annihilate (d — 0), the elastic
strains and stresses tend to zero. Far from the disclination line (r >> 10+/c)
gradient and classical solutions coincide. When d <« +/c, the elastic fields of a
dipole of wedge disclinations transform into the elastic fields of an edge dislocation
[9, 10] as is the case in the classical theory of elasticity.

4, Conclusions

The gradient elasticity described by (2) has been employed in the consideration of
nanoscale short-range elastic fields and interactions of dislocations and disclina-
tions. Exact analytical solutions for the displacements, strain and stress fields and
elastic energies of dislocations have been reported which demonstrate the elim-
ination of any singularity from the elastic fields and energies at the dislocation
line. For disclinations, the gradient solutions have been given for the strain and
stress fields where the classical singularities at the disclination lines also disap-
pear. These new non-singular elastic fields are considered as especially useful for
modeling nanoscale behavior and interactions of dislocations and disclinations in
thin-film or nanostructured solids.
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